research

Random 3-noncrossing partitions

Abstract

In this paper, we introduce polynomial time algorithms that generate random 3-noncrossing partitions and 2-regular, 3-noncrossing partitions with uniform probability. A 3-noncrossing partition does not contain any three mutually crossing arcs in its canonical representation and is 2-regular if the latter does not contain arcs of the form (i,i+1)(i,i+1). Using a bijection of Chen {\it et al.} \cite{Chen,Reidys:08tan}, we interpret 3-noncrossing partitions and 2-regular, 3-noncrossing partitions as restricted generalized vacillating tableaux. Furthermore, we interpret the tableaux as sampling paths of Markov-processes over shapes and derive their transition probabilities.Comment: 17 pages, 7 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions