research

Electronic structure near an impurity and terrace on the surface of a 3-dimensional topological insulator

Abstract

Motivated by recent scanning tunneling microscopy experiments on surfaces of Bi1−x_{1-x}Sbx′_{x'}\cite{yazdanistm,gomesstm} and Bi2_2Te3_3,\cite{kaptunikstm,xuestm} we theoretically study the electronic structure of a 3-dimensional (3D) topological insulator in the presence of a local impurity or a domain wall on its surface using a 3D lattice model. While the local density of states (LDOS) oscillates significantly in space at energies above the bulk gap, the oscillation due to the in-gap surface Dirac fermions are very weak. The extracted modulation wave number as a function of energy satisfies the Dirac dispersion for in-gap energies and follows the border of the bulk continuum above the bulk gap. We have also examined analytically the effects of the defects by using a pure Dirac fermion model for the surface states and found that the LDOS decays asymptotically faster at least by a factor of 1/r than that in normal metals, consistent with the results obtained from our lattice model.Comment: 7 pages, 5 figure

    Similar works