Protein-protein interaction network analysis of human fibroblast cells treated with ethanol

Abstract

Introduction: Studies show that ethanol can induce changes in proteomic profile of human fibroblast cells. Some of these proteins are important in promoting cancer. Thus, analyzing function and interaction networks of these proteins are essential for better understanding the carcinogenesis mechanism of ethanol. Materials and Methods: In this study the protein-protein interaction network (PPI) of six significant down-regulated proteins in human fibroblast cells (HFFF2) treated with ethanol were analyzed by using Cytoscape software and its algorithms. Results: PPI network analysis showed that the constructed network consisted of 756 nodes and 1166 edges. Results indicated that Heterogeneous nuclear ribonucleoprotein A1 with degree = 528 and Betweenness Centrality = 0.74 is a hub protein that ethanol can alter its expression. In addition, module evaluation showed that the hub protein has a key role in different overlapped complexes. On the other hand, annotation studies by using DAVID program indicated that this protein is involved in different important biological processes in the cell. Conclusion: The six down-regulated proteins treated with ethanol may become carcinogenic and can impose vast alterations in other vital biological processes of the cell. Among them, Heterogeneous nuclear ribonucleoprotein A1 is the most important one. © 2016, Semnan University of Medical Sciences. All rights reserved

    Similar works