research

3D Radiative Hydrodynamics Modeling of Convection of Stars to Probe Their Interiors and Photospheric Properties

Abstract

The dramatic flow of data from the Kepler and K2 missions opens the opportunity to significantly improve our knowledge of stellar interiors, surface dynamics, and structure. However, interpretation of these observations is a challenging task because it depends on tiny effects that can be studied only with advanced first-principles modeling. We present results of 3D time-dependent radiative hydrodynamic simulations of stellar outer convection zones and atmospheres taking into account chemical composition, radiative transfer, turbulence effects, and a realistic equation of state for main sequence stars. We will discuss properties of convective structure and dynamics, convective overshoot, effects of magnetic fields and rotation, as well as the potential influence of turbulent surface dynamics on high-precision RV measurements

    Similar works