research

Water-waves modes trapped in a canal by a body with the rough surface

Abstract

The problem about a body in a three dimensional infinite channel is considered in the framework of the theory of linear water-waves. The body has a rough surface characterized by a small parameter ϵ>0\epsilon>0 while the distance of the body to the water surface is also of order ϵ\epsilon. Under a certain symmetry assumption, the accumulation effect for trapped mode frequencies is established, namely, it is proved that, for any given d>0d>0 and integer N>0N>0, there exists ϵ(d,N)>0\epsilon(d,N)>0 such that the problem has at least NN eigenvalues in the interval (0,d)(0,d) of the continuous spectrum in the case ϵ(0,ϵ(d,N))\epsilon\in(0,\epsilon(d,N)) . The corresponding eigenfunctions decay exponentially at infinity, have finite energy, and imply trapped modes.Comment: 25 pages, 8 figure

    Similar works