Parametric study on the behaviour of bagasse ash–calcium carbide residue stabilized soil

Abstract

A series of experiments including unconfined compression tests, three-axial tests, compaction tests, and split tensile tests were undertaken to investigate the influence of compaction parameters on the behaviour of bagasse ash–calcium carbide residue stabilized soil. A preliminary study on soil with the addition of 4%, 6%, 8%, 10%, and 12% calcium carbide residue established that the lime fixation point (LFP) was 4%. Then 9% bagasse ash was added to soil with 4% calcium carbide residue, and the cation exchanges and pozzolanic reactions were investigated. The addition of calcium carbide residue to bagasse ash stabilized soil caused short-term changes due to cation exchange reactions, including an increase in the friction angle and cohesion in the stabilized soil. In addition, due to the short-term reaction, the maximum stiffness in three-axial tests occurred in the samples moulded with less than their optimum moisture content (OMC), whereas the peak strength occurred in the samples moulded at their OMC. After a 28-day curing period, pozzolanic reactions improved significantly the three-axial peak strength and stiffness of the stabilized soil, and the maximum three-axial shear strength and stiffness occurred in the samples prepared below their OMC

    Similar works