Abstract

We study the deterministic effects of Raman-induced crosstalk in amplified wavelength division multiplexing (WDM) optical fiber transmission lines. We show that the dynamics of pulse amplitudes in an N-channel transmission system is described by an N-dimensional predator-prey model. We find the equilibrium states with non-zero amplitudes and prove their stability by obtaining the Lyapunov function. The stability is independent of the exact details of the approximation for the Raman gain curve. Furthermore, we investigate the impact of cross phase modulation and Raman self and cross frequency shifts on the dynamics and establish the stability of the equilibrium state with respect to these perturbations. Our results provide a quantitative explanation for the robustness of differential-phase-shift-keyed WDM transmission against Raman crosstalk effects.Comment: 34 pages and 12 figures. Revised paper. Submitted to Optics Communication

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/12/2019