Eigenvalue analysis for summation-by-parts finite difference time discretizations

Abstract

Diagonal norm finite-difference based time integration methods in summation-by-parts form are investigated. The second, fourth and sixth order accurate discretizations are proven to have eigenvalues with strictly positive real parts. This leads to provably invertible fully-discrete approximations of initial boundary value problems. Our findings also allow us to conclude that the second, fourth and sixth order time discretizations are stiffly accurate, strongly S-stable and dissipatively stable Runge-Kutta methods. The procedure outlined in this article can be extended to even higher order summation-by-parts approximations with repeating stencil

    Similar works