CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
research
The effect of vascular graft and human umbilical cord blood-derived CD34+ stem cell on peripheral nerve healing
Authors
G. Abban
E. Coskun
+5 more
Çağdaş Erdoğan
A. Ozkul
B. Sahin
A. Topcu
A. Yilmaz
Publication date
1 January 2018
Publisher
'ID Design 2012/DOOEL Skopje'
Doi
Abstract
AIM: There are many trials concerning peripheral nerve damage causes and treatment options. Unfortunately, nerve damage is still a major problem regarding health, social and economic issues. On this study, we used vascular graft and human cord blood derived stem cells to find an alternative treatment solution to this problem. MATERIAL AND METHODS: We used 21 female Wistar rats on our study. They were anesthetized with ketamine and we studied right hind limbs. On Group 1, we did a full layer cut on the right sciatic nerve. On Group 2, we did a full layer cut on the right sciatic nerve, and we covered synthetic vascular graft on cut area. On Group 3, we did a full layer cut on right sciatic nerve, and we covered the area with stem cell applied vascular graft. RESULTS: At the end of postoperative 8. weeks, we performed EMG on the rats. When we compared healthy and degenerated areas as a result of EMG, we found significant amplitude differences between the groups on healthy areas whereas there was no significant difference on degenerated areas between the groups. Then we re-opened the operated area again to reveal the sciatic nerve cut area, and we performed electron microscope evaluation. On the stem cell group, we observed that both the axon and the myelin sheet prevented degeneration. CONCLUSION: This study is a first on using synthetic vascular graft and cord blood derived CD34+ cells in peripheral nerve degeneration. On the tissues that were examined with electron microscope, we observed that CD34+ cells prevented both axonal and myelin sheath degeneration. Nerve tissue showed similar results to the control group, and the damage was minimal. © 2018 Ali Yilmaz, Abdullah Topcu, Cagdas Erdogan, Levent Sinan Bir, Barbaros Sahin, Gulcin Abban, Erdal Coskun, Ayca Ozkul
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Pamukkale GCRIS Database
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:gcris.pau.edu.tr:11499/105...
Last time updated on 25/10/2024