This article describes a series of new results outlining equivalences between
certain "rewirings" of filterbank system block diagrams, and the corresponding
actions of convolution, modulation, and downsampling operators. This gives rise
to a general framework of reverse-order and convolution subband structures in
filterbank transforms, which we show to be well suited to the analysis of
filterbank coefficients arising from subsampled or multiplexed signals. These
results thus provide a means to understand time-localized aliasing and
modulation properties of such signals and their subband
representations--notions that are notably absent from the global viewpoint
afforded by Fourier analysis. The utility of filterbank rewirings is
demonstrated by the closed-form analysis of signals subject to degradations
such as missing data, spatially or temporally multiplexed data acquisition, or
signal-dependent noise, such as are often encountered in practical signal
processing applications