We examine the properties of a recently proposed observationally viable
alternative to homogeneous cosmology with smooth dark energy, the timescape
cosmology. In the timescape model cosmic acceleration is realized as an
apparent effect related to the calibration of clocks and rods of observers in
bound systems relative to volume-average observers in an inhomogeneous geometry
in ordinary general relativity. The model is based on an exact solution to a
Buchert average of the Einstein equations with backreaction. The present paper
examines a number of observational tests which will enable the timescape model
to be distinguished from homogeneous cosmologies with a cosmological constant
or other smooth dark energy, in current and future generations of dark energy
experiments. Predictions are presented for: comoving distance measures; H(z);
the equivalent of the dark energy equation of state, w(z); the Om(z) measure of
Sahni, Shafieloo and Starobinsky; the Alcock-Paczynski test; the baryon
acoustic oscillation measure, D_v; the inhomogeneity test of Clarkson, Bassett
and Lu; and the time drift of cosmological redshifts. Where possible, the
predictions are compared to recent independent studies of similar measures in
homogeneous cosmologies with dark energy. Three separate tests with indications
of results in possible tension with the Lambda CDM model are found to be
consistent with the expectations of the timescape cosmology.Comment: 22 pages, 12 figures; v2 discussion, references added, matches
published versio