Abstract

Spectra of the He I 10830 Angstrom line were obtained with NIRSPEC on the Keck 2 telescope for metal-deficient field giant stars. This line is ubiquitous in stars with T_eff greater than 4500K and M_V fainter than -1.5. Fast outflows are detected from the majority of stars and about 40 percent of the outflows have sufficient speed to allow escape of material from the star as well as from a globular cluster. Outflow speeds and line strengths do not depend on metallicity suggesting the driving mechanism for these winds derives from magnetic and/or hydrodynamic processes. Gas outflows are present in every luminous giant, but are not detected in all stars of lower luminosity indicating possible variability. Mass loss rates ranging from 3X10(-10) to 6X10(-8) solar mass/yr estimated from the Sobolev approximation represent values with evolutionary significance for red giant branch (RGB) and red horizontal branch (RHB) stars. We estimate that 0.2 M_sun will be lost on the RGB, and the torque of this wind can account for observations of slowly rotating RHB stars in the field. About 0.1-0.2 M_sun will be lost on the RHB itself. This first empirical determination of mass loss on the RHB may contribute to the appearance of extended horizontal branches in globular clusters. The spectra appear to resolve the problem of missing intracluster material in globular clusters. Opportunities exist for 'wind smothering' of dwarf stars by winds from the evolved population, possibly leading to surface pollution in regions of high stellar density.Comment: 53 pages; 15 figures; accepted for publication in The Astronomical Journa

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 25/03/2019