research

A Computational View of Market Efficiency

Abstract

We propose to study market efficiency from a computational viewpoint. Borrowing from theoretical computer science, we define a market to be \emph{efficient with respect to resources SS} (e.g., time, memory) if no strategy using resources SS can make a profit. As a first step, we consider memory-mm strategies whose action at time tt depends only on the mm previous observations at times tm,...,t1t-m,...,t-1. We introduce and study a simple model of market evolution, where strategies impact the market by their decision to buy or sell. We show that the effect of optimal strategies using memory mm can lead to "market conditions" that were not present initially, such as (1) market bubbles and (2) the possibility for a strategy using memory m>mm' > m to make a bigger profit than was initially possible. We suggest ours as a framework to rationalize the technological arms race of quantitative trading firms

    Similar works