A graph G is an a-angle crossing (aAC) graph if every pair of crossing edges
in G intersect at an angle of at least a. The concept of right angle crossing
(RAC) graphs (a=Pi/2) was recently introduced by Didimo et. al. It was shown
that any RAC graph with n vertices has at most 4n-10 edges and that there are
infinitely many values of n for which there exists a RAC graph with n vertices
and 4n-10 edges. In this paper, we give upper and lower bounds for the number
of edges in aAC graphs for all 0 < a < Pi/2