research

Notes on large angle crossing graphs

Abstract

A graph G is an a-angle crossing (aAC) graph if every pair of crossing edges in G intersect at an angle of at least a. The concept of right angle crossing (RAC) graphs (a=Pi/2) was recently introduced by Didimo et. al. It was shown that any RAC graph with n vertices has at most 4n-10 edges and that there are infinitely many values of n for which there exists a RAC graph with n vertices and 4n-10 edges. In this paper, we give upper and lower bounds for the number of edges in aAC graphs for all 0 < a < Pi/2

    Similar works

    Full text

    thumbnail-image

    Available Versions