Abstract

The multiplicities of stars, and some other properties, were collected recently by Eggleton & Tokovinin, for the set of 4559 stars with Hipparcos magnitude brighter than 6.0 (4558 excluding the Sun). In this paper I give a numerical recipe for constructing, by a Monte Carlo technique, a theoretical ensemble of multiple stars that resembles the observed sample. Only multiplicities up to 8 are allowed; the observed set contains only multiplicities up to 7. In addition, recipes are suggested for dealing with the selection effects and observational uncertainties that attend the determination of multiplicity. These recipes imply, for example, that to achieve the observed average multiplicity of 1.53, it would be necessary to suppose that the real population has an average multiplicity slightly over 2.0. This numerical model may be useful for (a) comparison with the results of star and star cluster formation theory, (b) population synthesis that does not ignore multiplicity above 2, and (c) initial conditions for dynamical cluster simulations

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 05/06/2019