Stokes parameters of skylight based on simulations and polarized radiometer measurements

Abstract

A method to calculate the Stokes parameters Q, U, as well as angle of polarization (AoP) from the new generation CIMEL Dual-Polar sun/sky radiometer CE318-DP polarized skylight measurements is developed in this thesis. Besides the degree of linear polarization (DoLP) and the total radiance I, the parameters Q, U, and AoP have much potential to improve retrievals of aerosol microphysical and chemical properties. However, they have not been derived based on the CE318-DP so far because they change with the reference plane that is hard to know due to an uncontrolled initial angle related to installation of the optical sensor head to the automated mount of this type of instrument. In this work, the polarization pattern of skylight with the direction of polarization perpendicular to the scattering plane (i.e., the principal plane in the solar principal plane geometry) is applied to correct the initial angle and then to obtained Q, U, and AoP. The perpendicular and parallel polarized radiances Ir and Il, as well as the linear depolarization ratio ρ are further derived after Q is known. A new polarized almucantar geometry based on CE318-DP is measured to illustrate abundant variation features of these parameters. These new polarization parameters in conjunction with DoLP and I are analyzed based on some typical long-term sites within the Sun/sky-radiometer Observation NETwork (SONET) and a joint site of the AErosol RObotic NETwork (AERONET) in China. Results calculated in this work are consistent with previous results, and generally comparable with the vector radiative transfer simulations and the measurements by other polarimetric instrument. Considering a 1°discrepancy of AoP, 3% fractional uncertainty in I and 0.005 uncertainty in DoLP propagated to Q and U, the uncertainties of Q in both of solar principal and almucantar planes and that of U in the almucantar geometry are acceptable

    Similar works