Determination of the minimum inhibitory concentration (MIC) of a drug that
prevents microbial growth is an important step for managing patients with
infections. In this paper we present a novel probabilistic approach that
accurately estimates MICs based on a panel of multiple curves reflecting
features of bacterial growth. We develop a probabilistic model for determining
whether a given dilution of an antimicrobial agent is the MIC given features of
the growth curves over time. Because of the potentially large collection of
features, we utilize Bayesian model selection to narrow the collection of
predictors to the most important variables. In addition to point estimates of
MICs, we are able to provide posterior probabilities that each dilution is the
MIC based on the observed growth curves. The methods are easily automated and
have been incorporated into the Becton--Dickinson PHOENIX automated
susceptibility system that rapidly and accurately classifies the resistance of
a large number of microorganisms in clinical samples. Over seventy-five studies
to date have shown this new method provides improved estimation of MICs over
existing approaches.Comment: Published in at http://dx.doi.org/10.1214/08-AOAS217 the Annals of
Applied Statistics (http://www.imstat.org/aoas/) by the Institute of
Mathematical Statistics (http://www.imstat.org