We give a general class of static, spherically symmetric, non-asymptotically
flat and asymptotically non-(anti) de Sitter black hole solutions in
Einstein-Maxwell-Dilaton (EMD) theory of gravity in 4-dimensions. In this
general study we couple a magnetic Maxwell field with a general dilaton
potential, while double Liouville-type potentials are coupled with the gravity.
We show that the dilatonic parameters play the key role in switching between
the Bertotti-Robinson and Reissner-Nordstr\"om spacetimes. We study the
stability of such black holes under a linear radial perturbation, and in this
sense we find exceptional cases that the EMD black holes are unstable. In
continuation we give a detailed study of the spin-weighted harmonics in
dilatonic Hawking radiation spectrum and compare our results with the
previously known ones. Finally, we investigate the status of resulting naked
singularities of our general solution when probed with quantum test particles.Comment: 27 pages, 4 figures, to appear in CQG