The role of magnetic fields during the protostellar phase of high-mass
star-formation is a debated topic. In particular, it is still unclear how
magnetic fields influence the formation and dynamic of disks and outflows. Most
current information on magnetic fields close to high-mass protostars comes from
H2O and OH maser observations. Recently, the first 6.7 GHz methanol maser
polarization observations were made, and they reveal strong and ordered
magnetic fields. The morphology of the magnetic field during high-mass
star-formation needs to be investigated on small scales, which can only be done
using very long baseline interferometry observations. The massive star-forming
regionW75N contains three radio sources and associated masers, while a
large-scale molecular bipolar outflow is also present. Polarization
observations of the 6.7 GHz methanol masers at high angular resolution probe
the strength and structure of the magnetic field and determine its relation to
the outflow. Eight of the European VLBI network antennas were used to measure
the linear polarization and Zeeman-splitting of the 6.7 GHz methanol masers in
the star-forming region W75N. We detected 10 methanol maser features, 4 of
which were undetected in previous work. All arise near the source VLA1 of W75N.
The linear polarization of the masers reveals a tightly ordered magnetic field
over more than 2000 AU around VLA1 that is exactly aligned with the large-scale
molecular outflow. This is consistent with the twisted magnetic field model
proposed for explaining dust polarization observations. The Zeeman-splitting
measured on 3 of the maser features indicates a dynamically important magnetic
field in the maser region of the order of 50mG. We suggest VLA1 is the powering
sources of the bipolar outflow.Comment: 5 pages, 3 figures, accepted by Astronomy and Astrophysic