On the basis of recent investigations, a newly developed analytical procedure
is used for constructing a wide class of localized solutions of the controlled
three-dimensional (3D) Gross-Pitaevskii equation (GPE) that governs the
dynamics of Bose-Einstein condensates (BECs). The controlled 3D GPE is
decomposed into a two-dimensional (2D) linear Schr\"{o}dinger equation and a
one-dimensional (1D) nonlinear Schr\"{o}dinger equation, constrained by a
variational condition for the controlling potential. Then, the above class of
localized solutions are constructed as the product of the solutions of the
transverse and longitudinal equations. On the basis of these exact 3D
analytical solutions, a stability analysis is carried out, focusing our
attention on the physical conditions for having collapsing or non-collapsing
solutions.Comment: 21 pages, 14 figure