Selectivity of particles in a region of space can be achieved by applying
external potentials to influence the particles in that region. We investigate
static and dynamical properties of size selectivity in binary fluid mixtures of
two particles sizes. We find that by applying an external potential that is
attractive to both kinds of particles, due to crowding effects, this can lead
to one species of particles being expelled from that region, whilst the other
species is attracted into the region where the potential is applied. This
selectivity of one species of particle over the other in a localized region of
space depends on the density and composition of the fluid mixture. Applying an
external potential that repels both kinds of particles leads to selectivity of
the opposite species of particles to the selectivity with attractive
potentials. We use equilibrium and dynamical density functional theory to
describe and understand the static and dynamical properties of this striking
phenomenon. Selectivity by some ion-channels is believed to be due to this
effect.Comment: 11 pages, 9 figure