research

General conditions for approximate quantum error correction and near-optimal recovery channels

Abstract

We derive necessary and sufficient conditions for the approximate correctability of a quantum code, generalizing the Knill-Laflamme conditions for exact error correction. Our measure of success of the recovery operation is the worst-case entanglement fidelity of the overall process. We show that the optimal recovery fidelity can be predicted exactly from a dual optimization problem on the environment causing the noise. We use this result to obtain an easy-to-calculate estimate of the optimal recovery fidelity as well as a way of constructing a class of near-optimal recovery channels that work within twice the minimal error. In addition to standard subspace codes, our results hold for subsystem codes and hybrid quantum-classical codes.Comment: minor clarifications, typos edited, references added

    Similar works

    Full text

    thumbnail-image

    Available Versions