We give new sufficient ergodicity conditions for two-state probabilistic
cellular automata (PCA) of any dimension and any radius. The proof of this
result is based on an extended version of the duality concept. Under these
assumptions, in the one dimensional case, we study some properties of the
unique invariant measure and show that it is shift-mixing. Also, the decay of
correlation is studied in detail. In this sense, the extended concept of
duality gives exponential decay of correlation and allows to compute
explicitily all the constants involved