Network organization of sensory-biased and multi-sensory working memory and attention in human cortex with fMRI

Abstract

The ability to attentively filter sensory information and manipulate it in working memory is critical for our ability to interact with the world. Although primary and secondary sensory cortical areas have been well-studied, frontal lobe contributions to sensory attention and working memory remain under-investigated. This dissertation investigates the topography and network organization of sensory-biased and multi-sensory regions in the healthy human brain using functional magnetic resonance imaging (fMRI). First, this research developed a series of functional connectivity analyses of data from the Human Connectome Project to validate and extend recently localized auditory-biased network structures, transverse gyrus intersecting the precentral sulcus (tgPCS) and caudal inferior frontal sulcus (cIFS), and visual-biased network structures, superior precentral sulcus (sPCS) and inferior precentral sulcus (iPCS), in lateral frontal cortex (LFC). Results replicated the original findings and extended them by revealing five additional bilateral LFC regions, including middle inferior frontal sulcus (midIFS) and frontal operculum (FO), differentially connected to either the visual- or auditory-biased networks. Due to inter-subject anatomical variability, identification of sPCS, tgPCS, iPCS and cIFS depends critically on within-subject analyses. Next, this work demonstrated that an individual’s unique pattern of resting-state functional connectivity can accurately identify their specific pattern of working memory (WM) and attention task activation in LFC using “connectome fingerprinting” (CF). CF predictions were superior to group-average predictions and matched the accuracy of within-subject task-based functional localization. This research developed and validated methods that use intrinsic functional connectivity information to perform functional brain analyses on highly idiosyncratic brain regions. Finally, a combined auditory, tactile and visual WM study revealed the joint organization of sensory-biased and multi-sensory regions within individual subjects. Hypothesized visual-biased midIFS and auditory-biased FO regions were functionally confirmed for the first time. Several bilateral tactile-biased regions, premotor dorsal, premotor ventral, anterior middle frontal gyrus, middle insula, postcentral sulcus, posterior middle temporal gyrus and pre-supplemental motor area, abutting previously described visual- and auditory-biased regions were identified. Several multi-sensory WM regions, recruited in each stimulus modality, were observed to partially overlap with visual-biased regions. Intrinsic functional connectivity analyses revealed that regions segregate into networks largely based upon their modality preferences.2020-06-14T00:00:00

    Similar works