En la presente investigaci on se propone la integraci on de las tecnolog as de Bases de Datos, y en particular de las Bases de Datos Federadas, como medio de almacenamiento de informaci on masiva probablemente inconsistente e incompleta, con los Sistemas de Argumentaci on Rebatible Basados en Reglas. Para esto primeramente se estudiar a el problema de la creaci on de una vista uni cada de datos a partir del conocimiento almacenado por varias Bases de Datos, resolviendo de manera esc eptica los con ictos potenciales debido a inconsistencias e incompletitudes, y luego se pasar a a la investigaci on acerca de la producci on masiva de reglas de conocimiento a partir del conocimiento almacenado en esta vista.
Una ventaja de un sistema de estas caracter sticas es que el mismo podr e acceder a un gran n omero de fuentes de conocimiento sin tener que conocer c omo acceder a cada una de ellas y obtener conclusiones (nuevas reglas de conocimiento) a partir de grandes cantidades de datos, de manera que estas sean m as objetivas e imparciales al estar basadas en un conocimiento mucho m as rico, amplio y diversi cado, permitiendo producir sistemas capaces de entregar respuestas m as precisas y justas a las consultas realizadas a un agente aut onomo con estas capacidades.Eje: Agentes y sistemas inteligentesRed de Universidades con Carreras en Informática (RedUNCI