Modelos predictivos y técnicas de minería de datos para la identificación de factores asociados al rendimiento académico de alumnos universitarios

Abstract

Este proyecto tiene por objetivo construir modelos predictivos del rendimiento académico de los estudiantes de las diversas carreras de la FACENA de la UNNE. Las variables a incorporar en los modelos serán seleccionadas de acuerdo a los resultados obtenidos a partir de los siguientes análisis: a) Resultados del test de diagnóstico de conocimientos matemáticos previos; b) Condiciones socioeconómicas de los alumnos de las distintas carreras y datos obtenidos de encuesta directa a los alumnos de primer año. Para la formulación y ajustes de los modelos de predicción, se utilizarán alternativamente, técnicas de minería de datos clásicas y métodos simbólicos o inteligentes, evaluando su desempeño en la predicción del rendimiento académico de los alumnos. Los resultados obtenidos a partir del desarrollo de este proyecto, constituirán un aporte significativo para los procesos de evaluación y acreditación universitarios, considerando que la reflexión sobre todos los elementos proporcionados por el análisis del rendimiento del alumnado contribuirá a la mejora de la calidad del sistema educativo.Eje: Tecnología Informática Aplicada en EducaciónRed de Universidades con Carreras en Informática (RedUNCI

    Similar works