We explore the appearance of terrestrial planets in formation by studying the
emergent spectra of hot molten protoplanets during their collisional formation.
While such collisions are rare, the surfaces of these bodies may remain hot at
temperatures of 1000-3000 K for up to millions of years during the epoch of
their formation. These object are luminous enough in the thermal infrared to be
observable with current and next generation optical/IR telescopes, provided
that the atmosphere of the forming planet permits astronomers to observe
brightness temperatures approaching that of the molten surface. Detectability
of a collisional afterglow depends on properties of the planet's atmosphere --
primarily on the mass of the atmosphere. A planet with a thin atmosphere is
more readily detected, because there is little atmosphere to obscure the hot
surface. Paradoxically, a more massive atmosphere prevents one from easily
seeing the hot surface, but also keeps the planet hot for a longer time. In
terms of planetary mass, more massive planets are also easier to detect than
smaller ones because of their larger emitting surface areas. We present
preliminary calculations assuming a range of protoplanet masses (1-10
M_\earth), surface pressures (1-1000 bar), and atmospheric compositions, for
molten planets with surface temperatures ranging from 1000 to 1800 K, in order
to explore the diversity of emergent spectra that are detectable. While current
8- to 10-m class ground-based telescopes may detect hot protoplanets at wide
orbital separations beyond 30 AU (if they exist), we will likely have to wait
for next-generation extremely large telescopes or improved diffraction
suppression techniques to find terrestrial planets in formation within several
AU of their host stars.Comment: 28 pages, 6 figures, ApJ manuscript format, accepted into the Ap