CORE
🇺🇦
make metadata, not war
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Community governance
Advisory Board
Board of supporters
Research network
About
About us
Our mission
Team
Blog
FAQs
Contact us
Microstructure of luminescent MgAl2O4 nanoceramics
Authors
D. R. Bautimirov
T. V. Dyachkova
+6 more
A. N. Kiryakov
V. A. Pustovarov
A. P. Tytunyunnik
G. Yakovlev
Y. G. Zainulin
A. F. Zatsepin
Publication date
1 January 2018
Publisher
'IOP Publishing'
Doi
Abstract
Luminescent transparent nanoceramics were obtained by thermobaric treatment (TBT) of magnesium aluminium spinel nanopowder. The morphological features were studied by scanning electron microscopy combined with X-ray powder diffraction. Obtained ceramics do not have any agglomerates and pores larger than 100 nm. Crystallites have a high size uniformity. An increase in the lattice constant of nanoceramics compared to the initial powder is observed. Under the TBT, a decrease in the region of coherent scattering due to elastic deformation of crystallites is found. The absence of cracks, large pores, nanosize grains, and high size uniformity reduce light loss in the material, increasing its transparency. Point defects were characterized by photoluminescence and electron spin resonance (ESR) methods. The glow in the 1.8 eV band is caused by the presence of Ti3+ impurity ions. An abnormally wide peak with a maximum at 2.4 eV in the photoluminescence spectrum is recorded. This signal is a superposition of the Mn2+ ions emission bands and oxygen vacancies (F and F+ centres). In the ESR spectrum, signals from impurity ions of iron, titanium, and manganese, as well as an intense signal at g = 2.005 associated with oxygen vacancies in nanoceramics were detected. © 2018 Institute of Physics Publishing. All rights reserved.The work was done as a part of the government task (№3.1485.2017/4.6) of the Ministry of Education and Science of the Russian Federation and was carried out in accordance with the scientific and research plans and state assignment of the Institute of Solid State Chemistry of the Ural Branch of the Russian Academy of Sciences (AAAA-A16-116122810212-5).et al.;NT-MDT Spectrum Instruments;Ostec-ArtTool Ltd.;Promenergolab LLC;Russian Foundation for Basic Research;Taylor and Francis Grou
Similar works
Full text
Available Versions
Institutional repository of Ural Federal University named after the first President of Russia B.N.Yeltsin
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:elar.urfu.ru:10995/75364
Last time updated on 21/08/2019