Comparative analysis of the structure and internal stress in Ti-6Al-4V alloys manufactured by 3D printing and processing with screw extrusion

Abstract

Study is based on the compare characterization of the structure and evaluation of the residual internal stresses in Ti-6Al-4V samples manufactured by the 3D printing (selective laser melting) and in the Ti-6Al-4V samples obtained with using of the severe plastic deformation by screw extrusion. The microstructure and residual stresses were examined by transmission electron microscope and X-ray diffractometer. High tensile internal residual stresses in the 3D printed sample were found. The high compressive residual internal stresses were found in the hot pressed and in the twisted samples. It was shown that arising of the high residual stresses in the studied samples under various technological processes occurred in various ways. The residual stresses in the severe plastic deformed samples arose due to non-uniform volumetric plastic deformation. In 3D printed sample, the residual tensile stresses arose from both phase (martensitic) transformation and thermal deformation. © Published under licence by IOP Publishing Ltd

    Similar works