The equilibrium thermodynamic properties of the SU(N) plasma at finite
temperature are studied non-perturbatively in the large-N limit, via lattice
simulations. We present high-precision numerical results for the pressure,
trace of the energy-momentum tensor, energy density and entropy density of
SU(N) Yang-Mills theories with N=3, 4, 5, 6 and 8 colors, in a temperature
range from 0.8T_c to 3.4T_c (where T_c denotes the critical deconfinement
temperature). The results, normalized according to the number of gluons, show a
very mild dependence on N, supporting the idea that the dynamics of the
strongly-interacting QCD plasma could admit a description based on large-N
models. We compare our numerical data with general expectations about the
thermal behavior of the deconfined gluon plasma and with various theoretical
descriptions, including, in particular, the improved holographic QCD model
recently proposed by Kiritsis and collaborators. We also comment on the
relevance of an AdS/CFT description for the QCD plasma in a phenomenologically
interesting temperature range where the system, while still strongly-coupled,
approaches a `quasi-conformal' regime characterized by approximate scale
invariance. Finally, we perform an extrapolation of our results to the N to
∞ limit.Comment: 1+38 pages, 13 eps figures; v2: added reference