research

Spectral shift function for operators with crossed magnetic and electric fields

Abstract

We obtain a representation formula for the derivative of the spectral shift function ξ(λ;B,ϵ)\xi(\lambda; B, \epsilon) related to the operators H0(B,ϵ)=(DxBy)2+Dy2+ϵxH_0(B,\epsilon) = (D_x - By)^2 + D_y^2 + \epsilon x and H(B,ϵ)=H0(B,ϵ)+V(x,y),B>0,ϵ>0H(B, \epsilon) = H_0(B, \epsilon) + V(x,y), \: B > 0, \epsilon > 0. We establish a limiting absorption principle for H(B,ϵ)H(B, \epsilon) and an estimate O(ϵn2){\mathcal O}(\epsilon^{n-2}) for ξ(λ;B,ϵ)\xi'(\lambda; B, \epsilon), provided λσ(Q)\lambda \notin \sigma(Q), where $Q = (D_x - By)^2 + D_y^2 + V(x,y).

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 01/04/2019