slides

Mechanism and kinetics for both thermal and electrochemical reduction of N_2 catalysed by Ru(0001) based on quantum mechanics

Abstract

The conversion of N_(2(g)) to NH_(3(g)) is an important industrial process that plays a vital role in sustaining the current human population. This chemical transformation relies heavily on the Haber–Bosch process (N2 thermal reduction, N_2TR), which requires enormous quantities of energy (2% of the world supply) and extreme conditions (200 atm and 500 °C). Alternatively, N_(2(g)) can be reduced to NH_(3(g)) through electrochemical means (N_2ER), which may be a less energy intensive and lower-capital approach since the H atoms come from H_2O not H_2. However, N_2ER efficiency is far from satisfactory. In order to provide the basis for developing a new generation of energy efficient processes, we report the detailed atomistic mechanism and kinetics for N_2ER on Ru(0001) along with a comparison to N2TR. We obtained these results using a new electrochemical model for quantum mechanics (QM) calculations to obtain free energy surfaces for all plausible reaction pathways for N_2ER under a constant electrode potential of 0.0 V_(SHE). For both processes, the elementary steps involve several steps of breaking of the NN bonds, hydrogenation of surface N_2H_X or NH_X, and NH_3 release. We find similar energetics for the NN cleavage steps for both systems. However, the hydrogenation steps are very different, leading to much lower free energy barriers for N_2ER compared to N_2TR. Thus, N_2ER favors an associative route where successive hydrogen atoms are added to N_2 prior to breaking the NN bonds rather than the dissociative route preferred by N_2TR, where the NN bonds are broken first followed by the addition of Hs. Our QM results provide the detailed free energy surfaces for N_2ER and N_2TR, suggesting a strategy for improving the efficiency of N_2ER

    Similar works