The equation of state calculated by Saumon and collaborators has been adopted
in most core-accretion simulations of giant-planet formation performed to date.
Since some minor errors have been found in their original paper, we present
revised simulations of giant-planet formation that considers a corrected
equation of state. We employ the same code as Fortier and collaborators in
repeating our previous simulations of the formation of Jupiter. Although the
general conclusions of Fortier and collaborators remain valid, we obtain
significantly lower core masses and shorter formation times in all cases
considered. The minor errors in the previously published equation of state have
been shown to affect directly the adiabatic gradient and the specific heat,
causing an overestimation of both the core masses and formation times.Comment: 4 pages, 2 figures, Accepted for publication in Astronomy and
Astrophysic