CORE
🇺🇦
make metadata, not war
Services
Research
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Community governance
Advisory Board
Board of supporters
Research network
About
About us
Our mission
Team
Blog
FAQs
Contact us
Advances in understanding the generation and evolution of the toroidal rotation profile on DIII-D
Authors
RV Budny
KH Burrell
+11 more
AJ Cole
JS Degrassie
AM Garofalo
WW Heidbrink
GL Jackson
MJ Lanctot
R Nazikian
H Reimerdes
WM Solomon
EJ Strait
MA Van Zeeland
Publication date
21 September 2009
Publisher
eScholarship, University of California
Abstract
Recent experiments using DIII-D's capability to vary the injected torque at constant power have focused on developing the physics basis for understanding rotation through the detailed study of momentum sources, sinks and transport. Non-resonant magnetic braking has generally been considered a sink of momentum; however, recent results from DIII-D suggest that it may also act as a source. The torque applied by the field depends on the rotation relative to a non-zero 'offset' rotation. Therefore, at low initial rotation, the application of non-resonant magnetic fields can actually result in a spin-up of the plasma. Direct evidence of the effect of reverse shear Alfvén eigenmodes on plasma rotation has been observed, which has been explained through a redistribution of the fast ions and subsequent modification to the neutral beam torque profile. An effective momentum source has been identified by varying the input torque from neutral beam injection at fixed βN, until the plasma rotation across the entire profile is essentially zero. This torque profile is largest near the edge, but is still non-negligible in the core, qualitatively consistent with models for a so-called 'residual stress'. Perturbative studies of the rotation using combinations of co- and counter-neutral beams have uncovered the existence of a momentum pinch in DIII-D H-mode plasmas, which is quantitatively similar to theoretical predictions resulting from consideration of low-k turbulence. © 2009 IAEA, Vienna
Similar works
Full text
Available Versions
Sustaining member
eScholarship - University of California
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:escholarship.org:ark:/1303...
Last time updated on 25/12/2021