research

On the zero-temperature limit of Gibbs states

Abstract

We exhibit Lipschitz (and hence H\"older) potentials on the full shift {0,1}N\{0,1\}^{\mathbb{N}} such that the associated Gibbs measures fail to converge as the temperature goes to zero. Thus there are "exponentially decaying" interactions on the configuration space {0,1}Z\{0,1\}^{\mathbb Z} for which the zero-temperature limit of the associated Gibbs measures does not exist. In higher dimension, namely on the configuration space {0,1}Zd\{0,1\}^{\mathbb{Z}^{d}}, d3d\geq3, we show that this non-convergence behavior can occur for finite-range interactions, that is, for locally constant potentials.Comment: The statement of Theorem 1.2 is more accurate and some new comment follow i

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 01/04/2019