Electric dipole moments of diamagnetic atoms of experimental interest are
calculated using the relativistic Hartree-Fock and random-phase approximation
methods, the many-body perturbation theory and configuration interaction
technique. We consider P,T-odd interactions which give rise to atomic electric
dipole moment in the second order of the perturbation theory. These include
nuclear Schiff moment, P,T-odd electron-nucleon interaction and electron
electric dipole moment. Interpretation of a new experimental constraint of a
permanent electric dipole moment of 199Hg [W. C. Griffith {\it et al.},
Phys. Rev. Lett. {\bf 102}, 101601 (2009)] is discussed.Comment: 9 page