We study the proximity Josephson sensor (PJS) in both bolometric and
calorimetric operation and optimize it for different temperature ranges between
25 mK and a few Kelvin. We investigate how the radiation power is absorbed in
the sensor and find that the irradiated sensor is typically in a weak
nonequilibrium state. We show in detail how the proximity of the
superconductors affects the device response: for example via changes in
electron-phonon coupling and out-of-equilibrium noise. In addition, we estimate
the applicability of graphene as the absorber material.Comment: 13 pages, 11 figures, submitted to Journal of Applied Physics, v2:
Addition of a new section discussing the radiation coupling to the device,
several minor change