Interfacial Engineering of Inorganic Materials for Energy Storage and Conversion Applications

Abstract

Since the micrometer-sized bulk materials have reached their inherent limits, development of new materials with high performance is essential for low cost and environmentally friendly electrochemical energy storage and conversion devices. One approach is to take advantage of interfacial engineering in order to modify currently developed materials, thus improving their properties for specific applications. The advantage of interfacial engineering is that it can also be applied to newly developed materials to further improve their properties for the specific applications. In first part of this dissertation, a systematic study is performed to investigate the effect of annealing in reducing atmospheres with different oxygen partial pressures and presence of other species (Ar, H2, N2, vacuum or hydrocarbon) on visible-light photocatalytic activity of TiO2. In second part, a facile nitridation method is used to improve the rate capability of TiO2 as anode material for Li ion batteries. The enhanced high-rate capacities are attributed to moderate surface nitridation with less-disordered nitridated regions, which may enhance the surface electronic conductivity without forming discrete, nanoscale, and surface amorphous films to block the lithium transport. In third part, pseudocapacitive properties of V2O5-based adsorbates supported on TiO2 nanoparticles is systematically measured. Surface amorphous films (SAFs), which form naturally at thermodynamic equilibria at 550-600 C with self-regulating or “equilibrium” thicknesses on the order of 1 nm, exhibit superior electrochemical performance at moderate and high scan rates (20-500 mV/s) that are of prime importance for supercapacitor applications, as compared with submonolayer and monolayer adsorbates formed at lower equilibration temperatures. In fourth part, we perform a combined experimental and computational investigation into the effects of aliovalent doping in NASICON on both bulk and grain boundary ionic conductivity. Our results show that the dopants with low solid solubility limits in NASICON solid solution lead to the formation of a conducting secondary phase at grain boundaries, thereby improving effective grain boundary conductivity that is otherwise hindered by the poorly-conducting Na3PO4 and ZrO2 secondary phases in undoped NASICON. In fifth part, inline electron holography technique is used to directly observe and investigate the space charge layers at grain boundaries of Y-doped BaZrO3

    Similar works