Schur\u27s Lemma For Coupled Reducibility And Coupled Normality

Abstract

Let A={Aij}i,jI\mathcal A = \{A_{ij} \}_{i, j \in \mathcal I}, where I\mathcal I is an index set, be a doubly indexed family of matrices, where AijA_{ij} is ni×njn_i \times n_j. For each iIi \in \mathcal I, let Vi\mathcal V_i be an nin_i-dimensional vector space. We say A\mathcal A is reducible in the coupled sense if there exist subspaces, UiVi\mathcal U_i \subseteq \mathcal V_i, with Ui{0}\mathcal U_i \neq \{0\} for at least one iIi \in \mathcal I, and UiVi\mathcal U_i \neq \mathcal V_i for at least one ii, such that Aij(Uj)UiA_{ij} (\mathcal U_j) \subseteq \mathcal U_i for all i,ji, j. Let B={Bij}i,jI\mathcal B = \{B_{ij} \}_{i, j \in \mathcal I} also be a doubly indexed family of matrices, where BijB_{ij} is mi×mjm_i \times m_j. For each iIi \in \mathcal I, let XiX_i be a matrix of size ni×min_i \times m_i. Suppose AijXj=XiBijA_{ij} X_j = X_i B_{ij} for all i,ji, j. We prove versions of Schur\u27s lemma for A,B\mathcal A, \mathcal B satisfying coupled irreducibility conditions. We also consider a refinement of Schur\u27s lemma for sets of normal matrices and prove corresponding versions for A,B\mathcal A, \mathcal B satisfying coupled normality and coupled irreducibility conditions

    Similar works