Balmer lines serve as important indicators of stellar effective temperatures
in late-type stellar spectra. One of their modelling uncertainties is the
influence of convective flows on their shape. We aim to characterize the
influence of convection on the wings of Balmer lines. We perform a differential
comparison of synthetic Balmer line profiles obtained from 3D hydrodynamical
model atmospheres and 1D hydrostatic standard ones. The model parameters are
appropriate for F,G,K dwarf and subgiant stars of metallicity ranging from
solar to 1/1000 solar. The shape of the Balmer lines predicted by 3D models can
never be exactly reproduced by a 1D model, irrespective of its effective
temperature. We introduce the concept of a 3D temperature correction, as the
effective temperature difference between a 3D model and a 1D model which
provides the closest match to the 3D profile. The temperature correction is
different for the different members of the Balmer series and depends on the
adopted mixing-length parameter in the 1D model. Among the investigated models,
the 3D correction ranges from -300K to +300K. Horizontal temperature
fluctuations tend to reduce the 3D correction. Accurate effective temperatures
cannot be derived from the wings of Balmer lines, unless the effects of
convection are properly accounted for. The 3D models offer a physically well
justified way of doing so. The use of 1D models treating convection with the
mixing-length theory do not appear to be suitable for this purpose. In
particular, there are indications that it is not possible to determine a single
value of the mixing-length parameter which will optimally reproduce the Balmer
lines for any choice of atmospheric parameters.Comment: 6 pages, 3 figures, accepted for publication in A&