research

Structure of S. aureus HPPK and discovery of a new inhibitor

Abstract

The first structural and biophysical data on the folate pathway enzyme and drug target, 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK), from the pathogenic bacterium Staphylococcus aureus is presented. HPPK is the second essential enzyme in the folate biosynthesis pathway, responsible for catalysing pyrophosphoryl transfer from cofactor (ATP) to the substrate (6-hydroxymethyl- 7,8-dihydropterin, HMDP). In-silico screening led to the discovery of a substrate competitive inhibitor, San1, which was subsequently co-crystallised with HPPK. A 1.65 Å resolution x-ray structure showed this to bind at the pterin site sharing many of the key intermolecular interactions of the substrate. ITC and SPR measurements yielded an equilibrium binding constant, Kd, of ~13 μM for San1. An IC50 of ~12 μM was determined by means of a new convenient tri-enzyme-coupled spectrophotometric assay. ITC and SPR further showed that the San1 inhibitor has no requirement for magnesium or ATP cofactor for competitive binding to the substrate site. According to 15N heteronuclear NMR measurements, the fast motion of the pterin loop (L2) is partially dampened in the ternary complex between SaHPPK, HMDP and , -methylene adenosine 5-triphosphate (AMPCPP), but the ATP loop (L3) remains mobile on the μs timescale. In contrast, for the SaHPPK/San1/AMPCPP ternary complex, loop L2 becomes rigid on the fast timescale and loop L3 becomes more ordered which are supported by a large entropic penalty associated with San1 binding as revealed by ITC. Backbone assignments and chemical shift perturbations implicate the sulphur in San1 as a likely important loop L2/L3 stabilizing mediato

    Similar works