thesis

Space efficient algorithms for string processing

Abstract

The suffix array (SA), which is an array containing the suffixes of a string sorted into lexicographical order, was introduced in the late eighties as a space efficient alternative to the suffix tree. It has since emerged as a useful data structure in string processing problems such as pattern matching, pattern discovery, and data compression. The SA is often coupled with the longest-common-prefix (LCP) array that contains the length of the longest common prefixes between consecutive suffixes in the SA. When enhanced with the LCP array, the SA can provide efficient solutions to the above applications including a problem called pattern mining. To date, all the mining algorithms lie at either extreme of the efficiency spectrum: they are either fast and use enormous amounts of space, or they are compact and orders of magnitude slower. We present a mining algorithm that achieves the best of both these extremes, having runtime comparable to the fastest published algorithms while using less space than the most space efficient. In all these applications, the construction of the SA --- also known as suffix sorting --- is one of the main computational bottlenecks. Most papers describing the SA assume the SA fits in RAM memory, limiting their applications. The fastest algorithms in this large memory suffix sorting category use powerful pointer copying heuristics to expedite suffix sorting. Several space efficient algorithms have emerged in the last five years, where the trend is to use as little RAM as possible. They do so by finding a clever way to trade runtime, or by using slow compressed data structures, or by using external memory (disk), or some combination of these techniques. In this thesis, we focus on improving the runtime of a space efficient algorithm due to Kärkkäinen by adapting the heuristics from large memory suffix sorting to a semi-external setting. Also, pointer copying has been heavily used to speed up the construction of the SA, but not the LCP array. We also discuss our attempts of combining the pointer copying heuristics to an efficient LCP construction algorithm due to Kärkkäinen, Manzini and Puglisi. The Burrows-Wheeler transform (BWT) was discovered independently of the SA, but it is now known that the two data structures are deeply linked. The BWT is central to practical compression tools such as szip and bzip2. Many papers have been published on constructing the BWT either in RAM or in external memory but few on inverting the BWT to obtain the original string --- in fact none in external memory. For larger datasets, the existing traditional approaches cannot be used to invert the BWT. In such cases, we have to use disk. We close the gap between theory and practice by examining the problem of inverting the BWT efficiently on disk. We provide a practical implementation of the only theoretical proposal for the problem by Ferragina, Gagie and Manzini. We also provide new, faster solutions to the problem based on simple scanning and compression techniques

    Similar works