research

Multiobjective parsimony enforcement for superior generalisation performance

Abstract

Program Bloat - phenomenon of ever-increasing program size during a GP run - is a recognised and widespread problem. Traditional techniques to combat program bloat are program size limitations of parsimony pressure (penalty functions). These techniques suffer from a number of problems, in particular their reliance on parameters whose optimal values it is difficult to a priori determine. In this paper, we introduce POPE-GP, a system that makes use of the NSGA-II multiobjective evolutionary algorithm as an alternative, parameter-free technique for eliminating program bloat. We test it on a classification problem and find that while vastly reducing program size, it does improve generalisation performance

    Similar works