We consider the implementation of two-party cryptographic primitives based on
the sole assumption that no large-scale reliable quantum storage is available
to the cheating party. We construct novel protocols for oblivious transfer and
bit commitment, and prove that realistic noise levels provide security even
against the most general attack. Such unconditional results were previously
only known in the so-called bounded-storage model which is a special case of
our setting. Our protocols can be implemented with present-day hardware used
for quantum key distribution. In particular, no quantum storage is required for
the honest parties.Comment: 25 pages (IEEE two column), 13 figures, v4: published version (to
appear in IEEE Transactions on Information Theory), including bit wise
min-entropy sampling. however, for experimental purposes block sampling can
be much more convenient, please see v3 arxiv version if needed. See
arXiv:0911.2302 for a companion paper addressing aspects of a practical
implementation using block samplin