thesis

Quantum Measure Theory: A New Interpretation

Abstract

Quantum measure theory can be introduced as a histories based reformulation (and generalisation) of Copenhagen quantum mechanics in the image of classical stochastic theories. These classical models lend themselves to a simple interpretation in which a single history (a single element of the sample space) is deemed to be 'real'; we require only that this real history should not be ruled out by the dynamics, the axioms of which ensure that not all histories are precluded. However, applying this interpretation naively to quantum measure theory we can find experimentally realisable systems (notably the Peres-Kochen-Specker system) in which every history is ruled out by the dynamics, challenging us to formulate a deeper realist framework. Our first response is to hold on to our existing interpretative framework and attempt a revision of the dynamics that would reduce quantum measure theory to a classical dynamics. We explore this approach by examining the histories formulation of a stochastic-collapse model on a simple (discrete) null-lattice, concluding that the drawbacks of this approach outweigh the benefits. Our second response is to abandon our classically inspired interpretation in favour of Sorkin's 'co-events', a more general ontology that still allows for strict realism. In this case the 'potentially real' objects of the theory (the 'beables' in Bell's language) are not individual histories but truth valuation maps, or co-events. We develop & evaluate various co-event schemes that have been suggested to date, finally adopting the multiplicative scheme; the current working model of co-event theory and a promising interpretation of quantum measure theory, though still a work in progress. We conclude by exploring the expression of the dynamics & predictions in this new framework.Comment: Thesis, 155 page

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 14/06/2016