CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
research
Interpreting comprehensive two-dimensional gas chromatography using peak topography maps with application to petroleum forensics
Authors
Hamidreza Ghasemi Damavandi
Robert K. Nelson
Christopher M. Reddy
Ananya Sen Gupta
Publication date
28 November 2016
Publisher
'Springer Science and Business Media LLC'
Doi
View
on
PubMed
Abstract
© The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Chemistry Central Journal 10 (2016): 75, doi:10.1186/s13065-016-0211-y.Comprehensive two-dimensional gas chromatography (GC×GC) provides high-resolution separations across hundreds of compounds in a complex mixture, thus unlocking unprecedented information for intricate quantitative interpretation. We exploit this compound diversity across the (GC×GC) topography to provide quantitative compound-cognizant interpretation beyond target compound analysis with petroleum forensics as a practical application. We focus on the (GC×GC) topography of biomarker hydrocarbons, hopanes and steranes, as they are generally recalcitrant to weathering. We introduce peak topography maps (PTM) and topography partitioning techniques that consider a notably broader and more diverse range of target and non-target biomarker compounds compared to traditional approaches that consider approximately 20 biomarker ratios. Specifically, we consider a range of 33–154 target and non-target biomarkers with highest-to-lowest peak ratio within an injection ranging from 4.86 to 19.6 (precise numbers depend on biomarker diversity of individual injections). We also provide a robust quantitative measure for directly determining “match” between samples, without necessitating training data sets. We validate our methods across 34 (GC×GC) injections from a diverse portfolio of petroleum sources, and provide quantitative comparison of performance against established statistical methods such as principal components analysis (PCA). Our data set includes a wide range of samples collected following the 2010 Deepwater Horizon disaster that released approximately 160 million gallons of crude oil from the Macondo well (MW). Samples that were clearly collected following this disaster exhibit statistically significant match (99.23±1.66)% using PTM-based interpretation against other closely related sources. PTM-based interpretation also provides higher differentiation between closely correlated but distinct sources than obtained using PCA-based statistical comparisons. In addition to results based on this experimental field data, we also provide extentive perturbation analysis of the PTM method over numerical simulations that introduce random variability of peak locations over the (GC×GC) biomarker ROI image of the MW pre-spill sample (sample #1 in Additional file 4: Table S1). We compare the robustness of the cross-PTM score against peak location variability in both dimensions and compare the results against PCA analysis over the same set of simulated images. Detailed description of the simulation experiment and discussion of results are provided in Additional file 1: Section S8. We provide a peak-cognizant informational framework for quantitative interpretation of (GC×GC) topography. Proposed topographic analysis enables (GC×GC) forensic interpretation across target petroleum biomarkers, while including the nuances of lesser-known non-target biomarkers clustered around the target peaks. This allows potential discovery of hitherto unknown connections between target and non-target biomarkers.This research was made possible in part by a grant from the Gulf of Mexico Research Initiative (GoMRI-015), and the DEEP-C consortium, and in part by NSF Grants OCE-0969841 and RAPID OCE-1043976 as well as a WHOI interdisciplinary study award
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Springer - Publisher Connector
See this paper in CORE
Go to the repository landing page
Download from data provider
Last time updated on 05/06/2019
Woods Hole Open Access Server
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:darchive.mblwhoilibrary.or...
Last time updated on 07/08/2019