research

Evolution from Non-Fermi to Fermi Liquid Transport Properties by Isovalent Doping in BaFe2(As1-xPx)2 Superconductors

Abstract

The normal-state charge transport is studied systematically in high-quality single crystals of BaFe2_2(As1x_{1-x}Px_x)2_2 (0x0.710 \leq x \leq 0.71). By substituting isovalent P for As, the spin-density-wave (SDW) state is suppressed and the dome-shaped superconducting phase (Tc31T_c \lesssim 31 K) appears. Near the SDW end point (x0.3x\approx0.3), we observe striking linear temperature (TT) dependence of resistivity in a wide TT-range, and remarkable low-TT enhancement of Hall coefficient magnitude from the carrier number estimates. We also find that the magnetoresistance apparently violates the Kohler's rule and is well scaled by the Hall angle ΘH\Theta_H as Δρxx/ρxxtan2ΘH\Delta\rho_{xx}/\rho_{xx} \propto \tan^2\Theta_H. These non-Fermi liquid transport anomalies cannot be attributed to the simple multiband effects. These results capture universal features of correlated electron systems in the presence of strong antiferromagnetic fluctuations.Comment: 4 pages, 4 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions