We investigate the stability of strange quark matter and the properties of
the corresponding strange stars, within a wide range of quark mass scaling. The
calculation shows that the resulting maximum mass always lies between 1.5 solor
mass and 1.8 solor mass for all the scalings chosen here. Strange star
sequences with a linear scaling would support less gravitational mass, and a
change (increase or decrease) of the scaling around the linear scaling would
lead to a larger maximum mass. Radii invariably decrease with the mass scaling.
Then the larger the scaling, the faster the star might spin. In addition, the
variation of the scaling would cause an order of magnitude change of the strong
electric field on quark surface, which is essential to support possible crusts
of strange stars against gravity and may then have some astrophysical
implications.Comment: 5 pages, 6 figures, 1 table. accepted by M