Electrocaloric temperature change in ferroelectric Si-doped hafnium oxide (HfO2) thin films: Presentation held at 37th Spring Meeting of the European Materials Research Society, E-MRS 2019, 27-31 May 2019, Nizza

Abstract

Ferroelectric HfO2-based thin films receive extensive research interest due to their large spontaneous polarization, scalability, and CMOS compatible manufacturing. As in ferroelectrics, the remnant polarization exhibits a temperature dependence, one can observe a strong pyroelectric response in such films. Recently, the pyroelectric effect of doped HfO2 films has been observed [1]. The electrocaloric effect is closely related to it, as describing a temperature change of the material due to the application of an electric field. First published results indicate rather large electrocaloric coefficients, making doped HfO2 a promising candidate for on-chip solid-state cooling [2]. In this work, a specialized test structure is used to directly assess the strength of the electrocaloric effect in a 20 nm Si-doped HfO2 nano-laminate. A thin-film temperature sensor is formed on the metal-ferroelectric-metal structure, enabling excitation frequencies of up to 60 kHz. Measurement with respect to an electric bias field provides insight into the nature of thermal-electric energy conversion in HfO2 thin films. Additionally, bias dependent pyroelectric measurements are employed to assess the role of defect dipoles, which may have important implications for electrocaloric applications

    Similar works

    Full text

    thumbnail-image

    Available Versions