Uso de funções ortogonais para descrever a produção de leite no dia de controle por meio de modelos de regressão aleatória

Abstract

Registros de produção de leite de 68.523 controles leiteiros de 8.536 vacas da raça Holandesa, filhas de 537 reprodutores, distribuídas em 266 rebanhos, com parições nos anos de 1996 a 2001, foram utilizados na comparação de modelos de regressão aleatória, para estimação de componentes de variância. Os modelos de regressão aleatória diferiram entre si pelo grau do polinômio de Legendre utilizado para descrever a trajetória da curva de lactação dos animais. Os modelos incluíram os efeitos rebanho-mês-ano do controle, composição genética dos animais, freqüência de ordenhas diárias, regressão polinomial em cada classe de idade-estação de parto para descrever a parte fixa da lactação e regressão polinomial aleatória relacionadas aos efeitos genético direto e de ambiente permanente. As estimativas de herdabilidade obtidas oscilaram de 0,122 a 0,291. Verificou-se que o modelo de regressão aleatória que utilizou a maior ordem para os polinômios de Legendre descreveu melhor a variação genética da produção de leite, de acordo com o critério de Akaike.Data comprising 68,523 test day milk yield of 8,536 cows of the Holstein breed, daughters of 537 sires, distributed in 266 herds, calving from 1996 to 2001, were used to compare random regression models, for estimating variance. Test day records (TD) were analyzed by different random regression models regarding the function used to describe the trajectory of the lactation curve of the animals. Legendre orthogonal polynomials function of second, third and fourth order were used. The random regression models included the effects of herd-month-year of the control, genetic group of the animals; the frequency of the daily milk; regression coefficients for each class of age-season (in order to describe the fixed part of the lactation curve) and random regression coefficients related to the direct genetic and the permanent environmental effects. The heritability estimates obtained using the random regression models ranged from 0.122 to 0.291. The random regression model which used the fourth order Legendre polynomials was the model which better described the genetic variation of the milk yield, according to AIC test

    Similar works